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Abstract

Sap-feeding insects often maintain two or more nutritional endosymbionts that act in concert to produce compounds essen
tial for insect survival. Many mealybugs have endosymbionts in a nested configuration: one or two bacterial species reside 
within the cytoplasm of another bacterium, and together, these bacteria have genomes that encode interdependent sets 
of genes needed to produce key nutritional molecules. Here, we show that the mealybug Pseudococcus viburni has three 
endosymbionts, one of which contributes only two unique genes that produce the host nutrition-related molecule choris
mate. All three bacterial endosymbionts have tiny genomes, suggesting that they have been coevolving inside their insect 
host for millions of years.
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Significance
Nutritional endosymbionts synthesize—or contribute to the synthesis of—key metabolites such as essential amino acids 
and vitamins for their host organism. These nutrients are required by hosts because of their limited diets, which in the 
case of mealybugs are limited strictly to plant phloem sap. Genome sequencing of insect endosymbionts has shown that 
their genomes can be very small, encoding a few genes outside of core bacterial processes and nutrient provisioning. 
Here, we highlight an example that has taken this reductive process to the extreme: a mealybug endosymbiont contri
butes only a single unique essential compound to the symbiosis.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Sap-feeding insects form long-term endosymbioses with 
bacteria or fungi to supplement their diets with essential 
amino acids and vitamins (Baumann 2005). Bacteria that 
form endosymbioses undergo stereotyped and sometimes 
extreme genome reduction during coevolution with 
their insect hosts (McCutcheon and Moran 2011). 
Endosymbionts are sometimes supplemented or replaced 

by new bacterial or fungal symbionts (Koga and Moran 
2014; Husnik and McCutcheon 2016; Matsuura et al. 
2018; Dial et al. 2021). In mealybugs (Hemiptera: 
Pseudococcidae), as in other related insects (Bennett and 
Moran 2013; Oakeson et al. 2014; Mao and Bennett 
2020), symbiont replacement and supplementation have 
occurred multiple times, resulting in a diversity of symbiont 
types and ages across species (Husnik and McCutcheon 
2016).
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For example, in the handful of mealybug species with 
available genomic data, numerous bacterial symbionts in 
the Sodalis genus have been found whose genomes range 
in size over an order of magnitude, from 3.7 Mb (Garber 
et al. 2021) to 0.35 Mb (Husnik and McCutcheon 2016). 
It is thought that this variation in genome size reflects vari
ation in endosymbiont age: newly established endosym
bionts tend to have larger genomes, and endosymbionts 
that have had long associations tend to have smaller gen
omes (Moran 1996; Andersson and Kurland 1998; 
Andersson and Andersson 1999; Wernegreen 2002; 
Moran et al. 2009; Wolf and Koonin 2013; Oakeson et al. 
2014).

In most sequenced mealybugs, a single Sodalis endosym
biont resides within the cytoplasm of another bacterial 
endosymbiont, Tremblaya princeps (von Dohlen et al. 
2001). There has been one report of a mealybug with 
two intra-Tremblaya endosymbionts, both with large gen
omes and likely recently acquired (Garber et al. 2021). 
Here, we report a similar three-way endosymbiosis, but 
where all symbionts have highly reduced genomes and so 
we infer that they have been coevolving with their host in
sect for millions of years. Remarkably, one endosymbiont 
provides only one unique nutrition-related molecule to 
the symbiosis.

Results and Discussion

Endosymbiont Genome Assembly and Binning

Hybrid assembly of endosymbiont contigs using PacBio and 
Illumina reads resulted in four circular-mapping contigs, 
two of which (754,563 and 281,389 bp) are affiliated 
with the Sodalis group within Gammaproteobacteria. The 
other two circular contigs (123,124 and 20,943 bp) belong 
to T. princeps. Combined, the two Tremblaya contigs add 
up to the typical size of Tremblaya’s genome (144 kb) 
from other mealybug species (Husnik and McCutcheon 
2016). It is unclear how Tremblaya’s genome has fragmen
ted into two circles, but genome instability is not uncom
mon in endosymbionts (Van Leuven et al. 2014; Campbell 
et al. 2015; Campbell et al. 2017) and mitochondria 
(Palmer and Shields 1984; Vlcek et al. 2011; Shao et al. 
2012; Wu et al. 2015; Shao et al. 2017). Read mapping re
vealed that both gammaproteobacterial contigs have simi
lar but distinct read coverages (81× and 104×). Tremblaya 
has a much higher read coverage (1798×) and likely main
tains many copies of its genome, as reported in the 
Tremblaya symbiont of the long-tailed mealybug, 
Pseudococcus longispinus (Garber et al. 2021) and in the 
obligate intracellular symbionts of other insects (Komaki 
and Ishikawa 1999, Woyke et al. 2010, Van Leuven et al. 
2014).

Pseudococcus viburni Harbors Two Ancient 
Sodalis-Related Endosymbionts

Each Sodalis-related contig encodes its own complete set of 
ribosomal proteins, tRNA genes, and rRNA genes 
(supplementary fig. S1, Supplementary Material online). 
The larger 755-kb contig encodes two copies of the rRNA 
operon (supplementary fig. S2, Supplementary Material on
line). A phylogenomic tree (Fig. 1) supports the presence of 
two species of Sodalis symbionts, with one endosymbiont 
(755 kb) clustering with Moranella endobia (hereafter, 
Moranella) (McCutcheon and von Dohlen 2011) and 
the other (281 kb) branching off from the phylogenetic 
cluster that encompasses Mikella endobia (Husnik 
and McCutcheon 2016) and Trabutinella endobia (Szabó 
et al. 2017). The similar read coverage depth of each 
Sodalis-related endosymbiont suggests that cells from 
both symbiont species are present at similar abundances.

The two Sodalis endosymbionts have highly reduced and 
gene-dense genomes, with relatively few pseudogenes 
(<10%). These features, along with long-branch lengths in 
the phylogenomic tree, suggest that both Sodalis-related en
dosymbionts are ancient (Moran 1996; Wernegreen 2002, 
McCutcheon and Moran 2011).

Naming of the Novel Sodalis-Related Symbionts

We propose the name Candidatus Sodalis endoviburni LRG 
(hereafter, S. endoviburni LRG) for the Sodalis-allied organ
ism with the larger genome (LRG meaning large) and 
Candidatus S. endoviburni CPS (hereafter, S. endoviburni 
CPS) for the Sodalis-allied organism with the smaller gen
ome (CPS reflecting that all this organism seems to contrib
ute to the symbiosis is carbamoyl phosphate synthesis; see 
the next section for a description of this genome).

Carbamoyl Phosphate Synthase: S. endoviburni CPS’s 
Only Contribution to the Symbiosis

To examine nutritional contributions and metabolic com
plementarity between the two Sodalis endosymbionts of 
P. viburni, we screened both genomes, along with 
Tremblaya and the host’s genome, for pathways relevant 
to amino acid and vitamin biosynthesis (Baumann 2005; 
Douglas 2006). We found that genes for these pathways 
are mostly retained on the genomes of S. endoviburni 
LRG, Tremblaya, and the host (Fig. 2a). The nuclear genome 
of P. viburni, like the closely related mealybugs P. longispi
nus and Planococcus citri, encodes numerous bacterial 
genes (acquired via horizontal gene transfer) that seem to 
complement genes missing from the bacterial symbiont 
genomes (Husnik and McCutcheon 2016; Bublitz 2019). 
Our screen identified the same horizontal gene transfers 
(HGTs) in P. viburni that were previously reported in the 
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citrus mealybug P. citri (Husnik et al. 2013), suggesting 
these HGT events occurred prior to the split between 
Pseudococcus and Planococcus. Surprisingly, S. endovibur
ni CPS seems to only contribute three genes related to the 
biosynthetic pathways for essential amino acids: the small 
subunit of carbamoyl phosphate synthase (carA), the large 
subunit of carbamoyl phosphate synthase (carB), and shiki
mate kinase II (aroL). While aroL is essential for the synthesis 
of chorismate and subsequently a number of aromatic ami
no acids, it is also present in the genomes of S. endoviburni 
LRG and Tremblaya. It thus appears that the only unique 
nutritional contribution from S. endoviburni CPS is carba
moyl phosphate (from carAB), used in the production of 
the essential amino acid arginine (Fig. 2b).

While S. endoviburni CPS represents the smallest gen
ome within the Sodalis clade of symbionts, it is not the 
smallest symbiont genome sequenced so far. Smaller still 
are the symbionts of some sap-feeding leafhoppers, which 
have bacterial endosymbionts with genomes as small as 
about 100 kb, encoding more than three genes to enable 
to biosynthesis of essential metabolites from the insects’ 
sugar-based diet (Bennett and Moran 2013). Two other 

examples are similar to the level of specialization we report 
here for S. endoviburni CP. The first is the ancient symbiont 
Stammera of the plant-feeding leaf beetle, which only en
codes a few genes required for the breakdown of pectin 
(Salem et al. 2017). The second is a case in which an endo
symbiont genome appears to retain no symbiotic genes at 
all but rather seems to have eroded to the point of being 
nutritionally useless and likely destined for replacement 
(Manzano-Marín et al. 2018). Because the genes for the 
key nutritional molecule carbamoyl phosphate only exist 
on S. endoviburni CP, we expect that this endosymbiont 
is currently safe from extinction.

Methods

Insect Rearing

We used mealybugs from a colony reared to study the 
transmission of a selfish B chromosome (Vea et al. 2021). 
In brief, we initially obtained mealybugs from a glass house 
in the Royal Botanic Gardens of Edinburgh in Scotland; 
from these insects, we established a laboratory colony fed 
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FIG. 1.—Phylogenomic tree showing the relationship of the two P. viburni gammaproteobacterial endosymbionts (highlighted within dark and light red 
boxes) with other members from the Sodalis clade. Genome maps from select Sodalis-related endosymbionts, as well as the free-living Sodalis praecaptivus, 
are shown. Numbers inside each genome map show the size of the genome in megabases (million bases); genome maps are divided into two tracks, with the 
blue inner track showing the locations of protein-coding genes, and the other red track shows the locations of predicted pseudogenes. Nodes with 99% or 
more support are designated with filled green circles. Nodes with support values between 80% and 98% are colored blue. Nodes with less than 80% support 
are unlabeled.
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on sprouting potatoes at 25 °C on a 16-h light/8-h dark 
cycle.

Sequencing and Assembly

Illumina and PacBio sequence reads were obtained from 
and processed as described in Vea et al. (2021). Illumina 
reads were quality trimmed using Trimmomatic v0.36 
(minimum length = 36 bp, sliding window = 4 bp, and 
minimum quality score = 15 [ILLUMINACLIP:TruSeq3- 
PE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW: 
4:15 MINLEN:36]) (Bolger et al. 2014). PacBio and 
Illumina reads were then assembled using Canu v1.6 (de
fault parameters; Koren et al. 2017), resulting in 2,787 con
tigs and 440,161,839 bases. Contigs that appeared to be 
bacterial were extracted from the assembly using the 
SprayNPray software (Garber et al. 2022), and these puta
tive endosymbiont contigs were then used to recruit 
Illumina and PacBio reads. Mapping of Illumina reads was 
carried out using Bowtie2 v2.3.4.1 (Langmead and 
Salzberg 2012). Mapping of PacBio reads was done with 

BLASR v5.1 (Chaisson and Tesler 2012). Using Unicycler 
v0.4.8 (default parameters; Wick et al. 2017), we then 
performed a hybrid assembly of the putative 
endosymbiont-affiliated PacBio and Illumina reads.

Phylogenomic Analysis

Phylogenomic analyses were carried out using GToTree 
v1.5.38 (Lee 2019). Phylogenomic tree construction was 
carried out in RaxML, with 100 bootstraps (-N 100), the 
PROTCAT model for amino acid substitution, and the 
BLOSUM 62 amino acid matrix (-m PROTCATBLOSUM62) 
(Stamatakis 2014).

Functional Annotation and Pseudogene Identification

We annotated each endosymbiont genome using Prokka 
(Seemann 2014), which also predicted genes and open 
reading frames (ORFs) using a variety of software, including 
Prodigal (Hyatt et al. 2010) and RNAmmer (Lagesen et al. 
2007). Protein-coding genes were also annotated using 
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the GhostKOALA annotation server (Kanehisa et al. 2016). 
Pseudogenes were identified using the software 
Pseudofinder (Syberg-Olsen et al. 2022). Annotation data 
were consolidated with the pseudogene predictions and or
ganized in biosynthetic pathways using a semiautomated 
approach, which included custom Python scripts and visual 
inspection.

We identified putative bacteria-to-insect HGTs using the 
SprayNPray software (Garber et al. 2022) combined with 
previously published genomes (Husnik and McCutcheon 
2016). Briefly, SprayNPray identified eukaryotic contigs 
using a combination of metrics, including contig length, 
coding density, and GC content. ORFs from eukaryotic con
tigs were then compared against NBIC’s nonredundant 
database of proteins using DIAMOND (Buchfink et al. 
2021), and the top 100 matches were evaluated. ORFs 
that recruited mostly (>50%) bacterial homologs were 
flagged as potential HGTs.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.

Data Availability
Genomic data from the Pseudococcus viburni mealybugs was 
obtained from the following BioProject number: PRJEB47083, 
which was initially made available by Vea et al. (2021). 
Genome sequences and annotation data corresponding to 
P. viburni endosymbionts are available via FigShare: https:// 
doi.org/10.6084/m9.figshare.24945384.v1.
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