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ABSTRACT We characterized the complete genome sequence of Siphoviridae bacterio-
phage Erla, an obligatory lytic subcluster EA1 bacteriophage infecting Microbacterium
foliorum NRRL B-24224, with a capsid width of 65nm and a tail length of 112nm. The
41.5-kb genome, encompassing 62 predicted protein-coding genes, is highly similar
(99.52% identity) to that of bacteriophage Calix.

The discovery of antibiotic agents in 1928 by Alexander Fleming has completely
changed the way clinicians treat bacterial infections. However, with new therapeu-

tic challenges resulting from antibiotic resistance, scientists have now turned to bacte-
riophages as promising clinical alternatives to antibiotics (1). Aiding this endeavor is
the vast, though largely uncharacterized, diversity of bacteriophages across the globe
(current estimates range in the order of 1031 [2]).

Here, we report the complete genome sequence of bacteriophage Erla. Erla was
obtained from a soil sample collected at 16°C from a garden in Ottawa, Ontario,
Canada (45.428778 N, 75.677246 W). Following the standard procedures outlined in
the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary
Sciences (SEA-PHAGES) Discovery Guide (https://seaphagesphagediscoveryguide
.helpdocsonline.com/home), the sample was mixed in an equal volume of peptone-
yeast-calcium agar (PYCa) medium and shaken (250 rpm) at 30°C for 2 h. Next, the
sample was filtered (pore size, 0.22mm), mixed with 500ml host cells (Microbacterium
foliorum NRRL B-24224), and grown for 72 h with shaking (220 rpm). A 1-ml sample
was filtered (pore size, 0.22mm), and 100-ml samples of 10-fold serial dilutions were
mixed with 300ml host cells (Microbacterium foliorum NRRL B-24224) and 3.5ml PYCa
top agar. This mixture was incubated at 30°C for 2 to 3 days until plaques formed.
Erla was purified by repeated rounds of plaque picking into phage buffer, serial dilu-
tion, and plaque assays of 100ml of diluted phage, as described above. Amplification
was performed by flooding “webbed” plates with phage buffer overnight at 4°C. Erla
forms medium-sized plaques with a faint bullseye in the middle (Fig. 1a) and exhibits
a Siphoviridae morphology with an icosahedral capsid (diameter, 65 nm) enclosing
the double-stranded DNA, attached to a flexible, noncontractile tail (length, 112 nm;
Fig. 1b).
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In order to sequence Erla’s genome, DNA was extracted from the phage lysate using a
phenol-chloroform assay, followed by ethanol precipitation. Next, a sequencing library was
prepared using the NEB Ultra II FS kit and sequenced on an Illumina MiSeq instrument (150-
bp single-end reads) to .3,300� coverage (976,546 reads). Following Russell (3), the raw
reads were assembled using Newbler v.2.9 (4), resulting in a single linear contig 41,538bp in
size with a GC content of 63.4%, similar to the 68.7% GC content of its host, Microbacterium
foliorum NRRL B-24224. The assembly was checked for completeness, accuracy, and genome
termini using Consed v.29.0 (5). As neither read start buildups nor substantial variations in
coverage were observed, Erla’s genome is most likely circularly permuted.

Following the SEA-PHAGES Bioinformatics Guide (https://seaphagesbioinformatics
.helpdocsonline.com/home), Erla’s genome was annotated using DNAMaster v.5.23.5
(http://cobamide2.bio.pitt.edu). Sixty-two putative genes were identified using GLIMMER
v.3.02 (6), GeneMark v.3.25 and v.4.28 (7), and Starterator v.381 (https://seaphages.org/
software), corresponding to a gene density of 1.49 genes/kb. ARAGORN v.1.1 (included
in DNAMaster) and v.1.2.38 (8) and tRNAscan-SE v.2.0 (9) were used to search for tRNAs
and transfer-messenger RNA (tmRNA), but none were found. Functional assignments
were made using BLASTp v.2.10.1 (10) and HHpred (11), leading to a putative function
for 26 out of the 62 genes. TMHMM v.2.0 (12) and SOSUI v.1.11 (13) were used to gather
further information on proteins of no known function, leading to the identification of
two additional transmembrane proteins. Default parameters were used for all software.

Phamerator v.381 (14) was used to determine synteny among Erla and other bacte-
riophages previously sequenced as part of the SEA-PHAGES program, which supported
the above functional assignments. Following the classification guidelines established
by Hatfull et al. (15), Erla was identified as a Microbacterium subcluster EA1 bacterio-
phage. Multiple sequence alignments using Kalign v.1.04 (16) and BLASTn v.2.10.1 (11)
indicated that Erla is most closely related to Calix (percent identity, 99.52%; GenBank
accession number MN234163.1), Gelo (percent identity, 99.51%; MG962367.1), and Etta
(percent identity, 99.51%; MK977697.1).

Data availability. Whole-genome sequencing data are available through NCBI’s
Sequence Read Archive (BioProject accession number PRJNA488469; run accession
number SRR13108336). The annotated genome assembly has been deposited in
GenBank under accession number MW291026.
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FIG 1 Characterization of the Microbacterium bacteriophage Erla. (a) Erla forms medium-sized plaques
with a faint bullseye in the middle. (b) Transmission electron microscopy image showing Erla’s
Siphoviridae morphology with an icosahedral capsid (diameter, 65 nm) attached to a 112-nm-long tail.
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