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Abstract

Microbes gain access to eukaryotic cells as food for bacteria-grazing protists,
for host protection bymicrobe-killing immune cells, or for microbial benefit
when pathogens enter host cells to replicate. But microbes can also gain
access to a host cell and become an important—often required—beneficial
partner.The oldest beneficial microbial infections are the ancient eukaryotic
organelles now called the mitochondrion and plastid. But numerous other
host-beneficial intracellular infections occur throughout eukaryotes. Here
I review the genomics and cell biology of these interactions with a focus on
intracellular bacteria. The genomes of host-beneficial intracellular bacteria
have features that span a previously unfilled gap between pathogens and
organelles. Host cell adaptations to allow the intracellular persistence of
beneficial bacteria are found along with evidence for the microbial ma-
nipulation of host cells, but the cellular mechanisms of beneficial bacterial
infections are not well understood.
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1. INTRODUCTION: THE OUTCOMES OF BACTERIAL INFECTIONS

Interactions between eukaryotes and bacteria occur on a complex and dynamic continuum of type
and duration. Most interactions are probably transient and meaningless—just cells or organisms
bouncing off each other as they go about their business. But some interactions matter to one or
both of the organisms, and, in these situations, we say that a symbiosis has formed. In this review,
I use symbiosis in its original formulation (De Bary 1879, Oulhen et al. 2016), in which it simply
means dissimilar organisms living closely together in a sustained interaction, without judgment
of whether that interaction is good or bad for the participants. Symbioses that develop between
plants and animals but that occur outside of host cells, or ectosymbioses, such as those found on
the leaves of plants (Koskella 2020) or in the gut lumen of animals (Sommer & Bäckhed 2013) are
not discussed further in this review. Here I focus on symbioses that occur inside of host cells, or
endosymbioses.

It is difficult to overstate the impact that endosymbioses have had on the evolution of life. The
endosymbiosis of an alphaproteobacterial cell into an archaeal cell predated the diversification
of all known eukaryotes (Embley & Martin 2006, Zaremba-Niedzwiedzka et al. 2017), and the
establishment of a cyanobacterial cell into an ancient single-celled eukaryote gave rise to the pho-
tosynthetic eukaryotes (Gould et al. 2008,Keeling 2010). Plants, animals, fungi, and protists would
not exist without endosymbiosis. But these same eukaryotic organisms, born of intracellular sym-
bioses, are now plagued by a huge diversity of pathogens that live out some or all of their life cycle
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Host-beneficial
endosymbiont
(HBE): a beneficial
microbe that lives
most of its life cycle
inside a host cell

inside eukaryotic cells. Eukaryotic organisms have evolved sophisticated mechanisms to deal with
microbial intruders, such as the cell-autonomous innate immunity of plants and animals (Dodds
& Rathjen 2010, Randow et al. 2013, Tam & Jacques 2014) and the professional and adaptable
immune system of vertebrate animals (Hirano et al. 2011, Hoebe et al. 2004). Intracellular micro-
bial pathogens have evolved equally complex mechanisms to minimize or evade these eukaryotic
cellular defenses (Cossart et al. 2019). These interaction types—the formation of an organelle or
the establishment of an infection by an intracellular pathogen—give rise to three well-known out-
comes of endosymbiosis: A cell or organism is infected by a microbe and defeats it (the host wins;
see Figure 1d), a cell or organism is infected by a pathogen and is killed (the microbe wins; see
Figure 1f ), or a host cell is infected by a bacterium and an organelle is established (Figure 1k).

Here I review some of the genomic and cell biological features of these three endosymbi-
otic outcomes but only as a prelude to discussing the fourth possible outcome of infection, in
which a microbe enters a host cell and neither it nor the host is destroyed, and in which the
presence of an endosymbiont that is not quite an organelle becomes required by the host cell
(Figure 1h). I call these microbes host-beneficial endosymbionts (HBEs) (McCutcheon et al.
2019). HBEs are interesting because their interactions with host cells are a bit pathogen-like and
a bit organelle-like, but in general they are not well understood at the cell biological level.

2. BECOMING AN ORGANELLE: GENETIC AND GENOMIC
CONVERGENCE IN ENDOSYMBIOSIS

2.1. Eukaryotic Organelles of Bacterial Origin

While many host–pathogen relationships experience coevolution over long periods of time, most
individual host–pathogen interactions tend to occur in acute bouts because these relationships re-
sult in the sickening or death of one of the participants. In contrast, the establishment of the mito-
chondrion and plastid happened deep in evolutionary history and has resulted in near-permanent
establishment inside of host cells. The mitochondrion and plastid are so stable that they are no
longer considered extrinsic to their hosts—they are bacterial infections that have become parts of
their host cells, or organelles.

The nature and origin of mitochondria and plastids were debated for decades before DNA
sequencing, phylogenetics, and biochemical analysis definitively proved their bacterial origins
(Archibald 2014, Sapp 1994). While the bacterial provenance of mitochondria and plastids is no
longer seriously questioned, the nature of the interaction between the ancestral host cell and the
proto-organelle, along with the timing of integration relative to the evolution of other eukary-
otic organelles, is currently a matter of vigorous debate (Booth & Doolittle 2015, Lane & Martin
2015). For my purposes, simply saying that mitochondria and plastids are the two oldest intracel-
lular bacterial infections known to science is sufficient.

The bacterial nature of mitochondria and plastids is reflected in the structures of their genomes
(Smith & Keeling 2015); the organization, biosynthesis, and composition of their membranes and
other biochemical pathways (Kořený et al. 2013); and the phylogenetic signatures of the genes
that support their function (Keeling 2010, Roger et al. 2017). Because these organelles were
established in the common ancestors of eukaryotes and photosynthetic eukaryotes before the host
lineages started to diversify, transitional forms of early mitochondrial and plastid evolution do
not exist (Poole & Gribaldo 2014). But it is generally accepted that mitochondria and plastids
did not arise fully formed: They were once free-living bacteria that transitioned to an endosym-
biotic state (Figure 1i,j), and, in turn, these endosymbionts transitioned to the organellar state
(Figure 1j,k).
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Host wins

Pathogen wins

Host-beneficial
endosymbiosis
is established

Mitochondrion
is established

Generic
bacterial cell

Generic
eukaryotic cell

Mystery
protoeukaryotic cell

Alphaproteobacterial cell

?

Alphaproteobacterial cell
is an endosymbiont

a

b

c d

e f

g h

i j k

Figure 1

The possible outcomes of a bacterium infecting a host cell. Images in panels a–h show the outcomes of intracellular associations
between bacterial and eukaryotic cells. Images in panels i–k show some of the possible historical steps in the formation of the
mitochondrion-bearing eukaryotic cell. (a) A generic eukaryotic cell engulfs a generic gram-negative bacterial cell containing two lipid
bilayers (double gray ovals). (b) The bacterial cell is enveloped in a host-derived vacuole (red oval). (c) The bacterial cell is successfully
destabilized (yellow) by the host by vacuolar fusion with lysosomes and (d) eliminated. (e) The bacterial cell is a successful pathogen and
modifies its host vacuolar membrane to enable bacterial persistence and replication, which sickens (yellow) and eventually ( f ) kills the
host cell. (g) The benefits of a bacterial infection outweigh its costs, the vacuolar membrane is stabilized, and eventually (h) an
endosymbiosis is established with a bacterium containing three lipid bilayers. This outcome could originate from a host-benign
situation, such as the ingestion of bacterial food (shown as transitions from panels b to g) or from a mild pathogenic situation
(shown as transitions from panels e to g). (i) A host cell of unknown origin, likely an archaeal cell, somehow begins to house an
alphaproteobacterial cell. The alphaproteobacterial cell loses (or never gained) its host vacuolar membrane and ( j) goes through a
period of endosymbiosis of unknown similarity to modern endosymbioses (dashed two-way arrow). (k) The alphaproteobacterial
endosymbiont becomes the mitochondrion of the modern eukaryotic cell.

2.2. Genome Reduction in Endosymbiotic Bacteria

From a genomic perspective, the outcome of bacterial endosymbiosis is highly reproducible: The
genomes of bacteria that take up residence inside host cells lose genes and get smaller as the
bacterium spends more time in the endosymbiotic state (Casadevall 2008, George et al. 2020,
Husnik & Keeling 2019, McCutcheon & Moran 2012, Moran 2002, Moran & Bennett 2014,
Nowack et al. 2016, Ochman & Davalos 2006). Bacteria along this continuum can be divided
into four categories (Figure 2). The first category is the free-living state (Figure 2a), in which

118 McCutcheon

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
21

.3
7:

11
5-

14
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
72

.2
01

.1
04

.7
4 

on
 1

0/
12

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



a b dc

Host accumulation of HGT

Endosymbiont genome size

Free-living
bacterial cell

Free-living
eukaryotic cell

Protein transport and mosaicism

Figure 2

Genome reduction and genetic integration in endosymbiosis. (a, top) A free-living bacterial cell is shown in blue, in which the circular
chromosome is represented by a circular wide blue line marked with a thin black line. Bacterial proteins made from that genome are
shown as blue dots. (Bottom) A free-living eukaryotic cell is shown in gold, in which the multiple linear chromosomes of the genome are
represented by wide gold lines marked with thin black lines. Eukaryotic proteins made from this genome are shown as gold dots. (b) In
the early stages of endosymbiosis—no matter whether a host-beneficial endosymbiont (HBE) or a pathogen—the bacterial genome
loses genes and becomes smaller. This genome-reductive process is represented by a somewhat smaller circular wide blue line marked
with a thin black line. (c) If the bacterial endosymbiont is beneficial to the host and remains sequestered in host cells for long periods of
time, the genome of the bacterium reduces further. In some cases, the host genome acquires bacterial genes through horizontal gene
transfer (HGT; red squares on host genome) that compensate for genes lost from the endosymbiont genome. A few proteins made from
these HGTs (red dots) or native host genes (gold dots) have been shown to be transported into endosymbiont cells. Some bacterial
endosymbionts of sap-feeding insects and protists are found in this state. (d) In organelles, the bacterial genome has become extremely
reduced and encodes few genes. The host genome has acquired numerous HGTs (red squares) that compensate for lost endosymbiont
genes. Numerous proteins of both native host (gold dots) and HGT (red dots) origin are transported into the organelle, and in some cases
HGTs of bacterial origin function in the cytoplasm of the host. Gray bars at the bottom of the figure represent trends for genome size,
HGT, and protein transport across the levels of integration.

the bacterium and host are either unaffiliated or the bacterium is only a facultative or part-time
intracellular resident. The genomes of these bacteria tend to be larger in size (3–10 Mb) and
coding capacity (3,000–10,000 genes). The second category comprises bacteria that have recently
transitioned to an endosymbiotic state (Figure 2b). These bacterial genomes are smaller (1–3Mb)
and encode fewer genes (500–3,000) than their free-living relatives and can contain many recently
broken genes, or pseudogenes. Both pathogens and host-beneficial bacteria are found in this
category. Bacteria in the third category (Figure 2c) are typically HBEs that have been restricted
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to their host cells for long periods of time but include some intracellular pathogens. Bacteria in
this state tend to have very small genomes (0.1–1 Mb) encoding few (150–500) genes—the tiniest
HBE genomes can be less than 5% of the size of those of their free-living relatives. Notably,
the most-reduced HBE genomes in this category are smaller than some of the larger organellar
genomes. The fourth category includes only two endosymbionts: the mitochondrion and the
plastid (Figure 2d). The genomes of these organelles are diverse in size and structure, but the
coding capacity of mitochondria ranges from ∼100 genes to zero genes in mitochondria-derived
organelles that completely lack a genome. The range in plastids is about 250 genes to less than 20.

The evolutionary and mechanistic forces driving genome reduction in endosymbiotic bacteria
have been reviewed in detail elsewhere (Batut et al. 2014, Kirchberger et al. 2020, McCutcheon
& Moran 2012, McCutcheon et al. 2019, Moran & Bennett 2014), but here I highlight a few
general trends. The genes retained most consistently across the four categories of bacterial
genomes shown in Figure 4 are those involved in the core informational processing activities
of bacteria: genome replication, transcription, and translation. Outside of these core genetic
processes, retained genes reflect the role of the bacterium in the symbiosis and the age of the
association. Intracellular pathogens retain genes involved in infecting,manipulating, and escaping
the host cell (Lawrence 2005), while losing or modifying genes involved in immune recognition
by the host such as the lipopolysaccharide (LPS) layer in the outer membrane of gram-negative
bacteria (Needham & Trent 2013). HBEs with relatively large genomes (Figure 2b) also often
retain genes to infect and manipulate host cells (such as the secretion systems discussed in
Section 3.2) and often completely lose the pathways to build LPS and peptidoglycan (Moran &
Bennett 2014). What most strongly differentiates the gene inventories of pathogens and HBEs
are genes involved in producing energy and nutrients such as vitamins, amino acids, and ATP.
The genomes of intracellular pathogens tend to encode few pathways to build these metabolites
because they steal them from their hosts, while HBEs tend to retain these pathways because
they are often the reason for the HBEs’ existence (from the perspective of the host). In the
HBEs with the smallest genomes (Figure 2c), such as in the tiny bacterial genomes from insect
nutritional endosymbionts, their genomes consist of little else besides genes devoted to genome
replication, transcription, translation, and nutrient provisioning for the host (McCutcheon 2010,
McCutcheon & Moran 2012, Moran & Bennett 2014). The most-reduced HBE genomes—the
most organelle-like—encode no genes to build lipid bilayers or cell walls, encode few or no
transmembrane proteins, and have even lost numerous so-called essential genes involved in
translation such as amino acyl-tRNA synthetases and numerous ribosomal proteins (Galperin
et al. 2021, McCutcheon & Moran 2012, Moran & Bennett 2014).

2.3. Losing Genes, Moving Genes, and Importing Proteins

The progression of genome reduction shown in Figure 2 is accompanied by a progression of
genetic and cell biological integration through horizontal gene transfer (HGT) and protein
import. The genomes and proteomes of bacteria that are free-living (Figure 1a) or that have
recently transitioned to the intracellular state (Figure 1b) are independent from their host from
the perspective of vertical transmission. The genomes of hosts and endosymbionts in these two
categories may evolve in response to one another, such as when a host and a pathogen engage
in tit-for-tat Red Queen evolution (McLaughlin & Malik 2017), and the proteomes may even
physically interact in some cases, such as when a bacterial pathogen injects effector proteins into
the cytoplasm of a host cell (Omotade &Roy 2019), but genes that directly support the interaction
are typically not transferred between host and symbiont in these early stages of association.

Genetic integration starts to occur in the endosymbioses shown in Figure 1c. For example, in
some insects that host long-termHBEs with small genomes, bacterial genes have been transferred
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to the host insect genome to support the functioning of the endosymbionts (Husnik et al. 2013,
Luan et al. 2015, Nikoh & Nakabachi 2009, Nikoh et al. 2010, Sloan et al. 2014). In most cases,
these transferred genes are not from the genomes of the nutritional endosymbionts themselves
but from reproductive manipulators such as Wolbachia. This makes sense because bacteria such
asWolbachia reside within the germ cells of insects (Serbus & Sullivan 2007) and have been shown
to be frequent sources of bacterial DNA in arthropod genomes (Brelsfoard et al. 2014, Dunning
Hotopp et al. 2007, Hamilton et al. 2018, Leclercq et al. 2016). Similarly, in the example of the
amoeba Paulinella chromatophora and its cyanobacterial endosymbiont (highlighted in Section 4.5),
hundreds of bacterial HGTs are found in the amoeba genome, but only a minority of them seem to
have been transferred from the cyanobacterial endosymbiont (Nowack et al. 2016). Finally, in the
case of the ancient mitochondrial and plastid endosymbioses (Figure 1d), the organellar genomes
encode few genes, and the host genome encodes a complex mix of genes of various taxonomic
origins. Genes on the nuclear genomes of eukaryotes reflect the native genome of the host, the
bacterial ancestors of the organelle (that is, genes with alphaproteobacterial and cyanobacterial
origins), but also various other bacterial sources (Gray 2015, Ku et al. 2015, Qiu et al. 2013, Stairs
et al. 2020).

This progression of gene loss in endosymbionts and gene gain through HGT in the host is
coincident with a progression of biochemical mosaicism due to the transport of proteins to com-
partments unrelated to the genome on which they are encoded. In insects, two proteins produced
from bacteria-to-insect HGTs have been shown to be transported into the cytoplasm of the nu-
tritional endosymbionts by unknown mechanisms (Bublitz et al. 2019, Nakabachi et al. 2014). In
the amoeba Paulinella, hundreds of host proteins, some encoded by HGTs, are transported into
the cyanobacterial endosymbiont cells (Nowack & Grossman 2012, Singer et al. 2017). Finally,
in mitochondria and plastids, most of the proteins that function in the organelles are encoded in
the nuclear genome and are transported into the organelle by specialized protein import systems
(Pfanner & Meijer 1997, Reumann et al. 2005, Schmidt et al. 2010, Whelan 1999). In organelles,
the taxonomic origin and genome location of a gene are often unlinked to the compartment where
the protein encoded by that gene ends up functioning (Duchêne et al. 2005, Kořený et al. 2013,
Pagliarini et al. 2008).

The progression of gene loss on endosymbiont genomes, gene gain on host genomes,
and protein import of host genes into endosymbiont and organellar compartments shown in
Figure 2 leads to mosaic genomes and proteomes in endosymbiotic systems.While mitochondria
and plastids used to seem somewhat distinct in this progression—of bacterial origin, of course, but
so unique that they require their own names—we now have many insect and protist examples that
span the genomic gap that once existed between bacterium and organelle (Graf et al. 2021,Husnik
& Keeling 2019,McCutcheon et al. 2019, Nowack &Melkonian 2010). This repeatable and con-
vergent genomic response to sustained endosymbiosis is likely to have emerged from shared and
repeatable cell biological mechanisms of integration. Because these symbioses involve cells living
within cells, I next review some of the mechanisms used by microbes to enter into and persist
within eukaryotic cells.

3. CELLS GETTING INTO CELLS: THE MECHANISMS
AND OUTCOMES OF PHAGOCYTOSIS

3.1. Eukaryotic Phagocytosis: A Mechanism for Food and Defense

While the processes by which the ancestors of the mitochondrion and plastid entered their an-
cient host cells are unknown, microbes do not gain access to modern eukaryotic cells by accident.
With rare exceptions (Morisaki et al. 1995),microbes enter eukaryotic cells through the controlled
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Phagocytosis:
in eukaryotic cells, the
endocytosis of large
particles such as
bacteria, fungi, and
amoebas

Phagosomal
membrane:
the internalized
host-derived
membrane that results
from the phagocytosis
of an extracellular
microbe

production and internalization of the plasma membrane, or endocytosis (Doherty & McMahon
2009). Bacteria use many different endocytic mechanisms to get inside of cells, which at the high-
est level can be broken down into passive or active entry from the bacterial perspective. Passive
bacterial entry occurs in eukaryotic cells that are specialized in phagocytosis, a form of endocy-
tosis restricted to large particles greater than 0.5 μm (Fairn & Grinstein 2012, Lancaster et al.
2019, Russell 2007). Active bacterial entry can occur in almost any eukaryotic cell type, in which
pathogens induce their entry into host cells by exploiting numerous different types of endocytic
mechanisms (Cossart & Sansonetti 2004, Veiga et al. 2007, White et al. 2017). All microbes that
persist and replicate inside of eukaryotic cells use some idiosyncratic combination of factors to ma-
nipulate their hosts, but here I focus on microbial internalization into a newly formed phagocytic
vacuole that interacts with the classic endocytic pathway (Omotade & Roy 2019).

Because bacteria-eating phagotrophic protists occur in all of the major eukaryotic supergroups,
it seems reasonable to conclude that phagocytosis as a form of bacterial cell uptake and destruction
happened early in eukaryote evolution (Burki et al. 2020, Cavalier-Smith 2002, Koumandou et al.
2013, Mills 2020, Simpson & Eglit 2016). The cell biology of food ingestion by heterotrophic
protists shares deep homology with the ingestion and destruction of pathogenic microbes by an-
imal immune cells such as neutrophils and macrophages (Boulais et al. 2010, Bozzaro et al. 2008,
Lancaster et al. 2019, Steenbergen et al. 2001).This similarity has motived the hypothesis that het-
erotrophic protists serve as training cells for microbes that become intracellular animal pathogens
(Barker & Brown 1994, Casadevall 2012, Erken et al. 2013, Harb et al. 2000, Matz & Kjelleberg
2005, Molmeret et al. 2005). Consistent with the ancient origin of phagocytosis and its conserved
molecular mechanisms in eukaryotes,many animal cell types other than professional immune cells
can internalize and destroy bacterial cells in a process called cell-autonomous immunity (Gaudet
et al. 2016, Randow et al. 2013).

The process of eukaryotic phagocytosis is schematically illustrated in Figure 3. Briefly, af-
ter the plasma membrane internalizes a microbe (here, a gram-negative bacterium), the matu-
ration of a nascent phagosome occurs through a complex process involving cell signaling, actin
polymerization, lipid remodeling, vesicle trafficking, phagosome acidification, and lysosomal fu-
sion (Flannagan et al. 2012). The process starts with bacterial recognition by receptors on the
cell surface (Figure 3a), followed by plasma membrane deformation around the bacterial cell
in an actin-dependent process, with an internal vacuole (a phagosome) being formed through
membrane scission (Figure 3b). The phagosomal membrane is rapidly remodeled by interaction
with the endocytic pathway, eventually transforming the vacuole into a potent bacteria-killing
phagolysosome (Fairn & Grinstein 2012, Flannagan et al. 2012) (Figure 3c–e). In some cases, cel-
lular debris is eliminated from the cell through exocytosis (Figure 3f ). For my simplified purposes
in this review, phagosome maturation can be broken down into three phases. These three phases
are marked by the presence of different Rab GTPases—key regulators and organizers of vesicular
traffic in eukaryotic cells (Stenmark 2009)—on the vacuolar membrane (Rink et al. 2005). Newly
formed phagosomes quickly become enriched in Rab5, and as such Rab5 is commonly used as a
marker for early phagosomes (Figure 3b). As the phagosome matures, Rab5 is replaced by Rab7
(Figure 3c), the latter of which is a commonly used marker for late endosomes (Figure 3d). Late
endosomes eventually fuse with lysosomes to become phagolysosomes (Figure 3e), in which the
invading microbe is killed by low pH and a potent cocktail of degradative acid hydrolases.

3.2. Evasion and Exploitation of Eukaryotic Phagocytosis
by Intracellular Pathogens

Intracellular pathogens have developed numerous strategies to escape or block the process
of phagolysosome formation (Cornejo et al. 2017, Omotade & Roy 2019). Setting aside the
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Autophagy:
the process by which
eukaryotic cells
internalize organelles
and microbes in
membranous
compartments for
destruction and
recycling
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Figure 3

Routes of passage and persistence of microbes through host cells. (a) A microbe (gray) is recognized by a eukaryotic cell (red). (b) The
nascent phagosome acquires Rab5 (blue ovals) on the surface of the vesicle. (c) Rab5 is replaced by Rab7 (brown oval) during maturation
to a late phagosome. (d) Lysosomal fusion occurs and (e) destroys the phagocytosed microbe. ( f ) In some cell types, unused cell debris is
exocytosed. (g) Some intracellular microbes escape the phagosome to (h) replicate in the host cytoplasm. (i) These microbes can be
enveloped by autophagosomal membranes and ( j) delivered to lysosomes in double-membrane-bound vesicles for destruction. (k) Some
microbes can hijack the autophagy machinery to force their exit from the host cell without killing it. (l) Many intracellular microbes
remodel the phagosome to avoid phagolysosome formation. (m) In some cases, intracellular microbes can be released intact from the
host cell in a process called vomocytosis.

mechanisms used by bacteria to form long-term chronic infections (see the sidebar titled Chronic
Bacterial Infections), these avoidance strategies can be broken down into two main types de-
pending on their cellular location: cytoplasmic and vacuolar. Cytoplasmic microbes such as
Shigella flexneri and Listeria monocytogenes escape the phagosomal vacuole to replicate free in
the cytoplasm (Deretic & Levine 2009, Ray et al. 2009) (Figure 3g,h). After vacuolar escape,
cytoplasmic pathogens must also evade the autophagy system of the host to avoid destruction in
autolysosomes ( Jo et al. 2013) (Figure 3i,j). But most intracellular pathogens, such as Salmonella
enterica (Steele-Mortimer 2008), Brucella spp. (Celli 2019), Chlamydia trachomatis (Rother et al.
2019), and Mycobacterium tuberculosis (Russell 2001), spend all or most of their intracellular
life inside of a modified host vacuole (Figure 3l). No matter their primary cellular location,
intracellular pathogens are unified by their manipulation of conserved eukaryotic factors involved
in phagosomal maturation and stability, autophagy, and the secretory pathway (Anand et al. 2020,
Case et al. 2016, Fairn & Grinstein 2012, Omotade & Roy 2019).
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CHRONIC BACTERIAL INFECTIONS

Because host-beneficial endosymbionts (HBEs) form long-term intracellular infections, it is tempting to look for
similarities between HBEs and pathogenic bacteria that form chronic, long-term infections in hosts. Bacteria such
as Mycobacterium tuberculosis and Salmonella typhi can form chronic intracellular infections in humans by—among
other tricks to evade the host immune system such as modifying their cellular envelope—hiding out in macrophages
where the bacteria seem to replicate slowly or perhaps not at all (Monack et al. 2004, Pieters 2008, Ruby et al. 2012,
Young et al. 2002). In the case ofM. tuberculosis, infected macrophages are often sequestered into specialized tissues
called granulomas where they can persist for up to the lifetime of the individual (Pieters 2008). While these long-
term infections share some features with HBEs, such as the ability to persist inside of host phagosomes, they differ
in that hosts require HBEs to be intracellularly active so that the HBE can perform their host-beneficial functions.
Whereas bacteria that form chronic infections use the intracellular niche of a macrophage to stealthily hide from
the host in near-dormant states, hosts that maintain HBEs require robust growth of their intracellular microbes to
extract their beneficial goods.

Intracellular pathogens manipulate their host cells through the production and secretion of
effector proteins (Alix et al. 2011, Green & Mecsas 2016). Effectors are injected into the host
cytoplasm using several types of syringe-like secretion systems that are classified into different
types based on their structure, taxonomic distribution, and cargo specificity (Green & Mecsas
2016). Here I briefly highlight the type III secretion system (T3SS) as an example, because it
is found in a wide variety of both pathogenic and host-beneficial intracellular bacteria (Büttner
2012, Dale et al. 2002, de Souza Santos & Orth 2020, Degnan et al. 2009). T3SSs are typically
encoded by a conserved cluster of 20 to 30 genes that likely originated from genes used to build
the flagellar apparatus in bacteria (Abby & Rocha 2012). The T3SS complex spans the inner and
outer membranes of gram-negative bacteria and selectively injects tens to hundreds of proteins
into the cytoplasm of its target eukaryotic cell to alter or kill it (Galán & Waksman 2018).

Because intracellular pathogens manipulate the ancient and conserved phagocytic pathway, a
single type of pathogenic bacterium can often infect multiple host cell types in a single animal or
even infect cells of completely different eukaryotic hosts. For example, Legionella pneumophila can
kill both amoebas and human monocytes by remodeling its phagosomal vacuole to appear more
endoplasmic reticulum–like and avoid lysosome fusion (Prashar & Terebiznik 2015, Swanson &
Hammer 2000). Similarly, fundamental cell biological mechanisms involved in intracellular infec-
tion of the human pathogens M. tuberculosis and L. monocytogenes were discovered using genetic
screens in Drosophila cell lines (Cheng et al. 2005, Philips et al. 2005).

3.3. Escape Strategies for Intracellular Pathogens

A successful pathogen must have a way to escape its host cell so that it can continue to infect new
cells. The intracellular escape strategies of microbial pathogens fall into two main types (Flieger
et al. 2018, Hybiske & Stephens 2008). The first strategy overwhelms and kills the host cell, via
either the induction of programmed cell death or other indirect means. The second strategy does
not kill the host cell but rather involves the ejection of the microbe by some form of extrusion or
budding (which leaves the microbe in at least one host-derived membrane) or by ejection, exocy-
tosis, or other nonlytic exocytosis-like mechanisms (Alvarez & Casadevall 2006,Di Venanzio et al.
2017, Jacobovitz et al. 2021, Ma et al. 2006, Seoane & May 2020). For my purposes here, I focus
on pathogen escape strategies that leave both the host cell and microbe alive, because I suspect
these nonlytic strategies are the most likely to be used by the HBEs I outline in Section 4. Known
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Vomocytosis: a type
of exocytosis of
microbial cells out of
eukaryotic cells that
leaves both host and
microbe intact and
alive

pathogenic strategies for nonlytic host cell escape can be broken down into two types, depending
on whether the pathogen replicates in the cytoplasm or in a host-derived vacuole.M. tuberculosis
is predominantly a vacuolar resident but cytoplasmic growth has been observed ( Jamwal et al.
2016, van derWel et al. 2007). CytoplasmicMycobacterium have been shown to use the autophagic
pathway to nonlytically escape their host cell in a structure called the injectosome (Gerstenmaier
et al. 2015,Hagedorn et al. 2009) (Figure 3k). Pathogens that reside in host vacuoles can use exo-
cytic pathways for nonlytic escape from host cells, a process sometimes referred to as vomocytosis
(Seoane &May 2020) (Figure 3m).While vomocytosis is often used to describe the escape of fun-
gal pathogens (Alvarez & Casadevall 2006), it—or a process like it—also occurs with intracellular
bacterial pathogens (Chen et al. 2004, Di Venanzio et al. 2017, White et al. 2017). For the pur-
pose of this review, I call any nonlytic escape by a vacuolar microbe vomocytosis, even though the
mechanisms of escape through conventional exocytosis and vomocytosis differ across eukaryotic
cell types (Watkins et al. 2018).

4. HOST-BENEFICIAL BACTERIAL ENDOSYMBIONTS:
FROM PATHOGENS TO ORGANELLES

The reproducible genomic patterns observed in bacterial endosymbionts of various ages
(Figure 2) suggest the potential for convergent cellular mechanisms of HBE integration. The
limited number of mechanisms available for microbial entry into, persistence within, and escape
from eukaryotic cells (Figure 3) suggest that the manipulation of endocytic and exocytic processes
is the mechanistic funnel through which convergent HBE evolution is expressed. While the
general mechanisms used by pathogens, mitochondria, and plastids to allow persistence in host
cells are understood, relatively little is known about how bacteria that are not classified as
pathogens or organelles persist in host cells. Like pathogens, HBEs interact with eukaryotic
phagocytosis and autophagy systems but differ in that their hosts are strongly inclined to retain—
rather than destroy—their endosymbiotic microbes. Like mitochondria and plastids, some HBEs
are very old, genetically integrated with their hosts, and faithfully transmitted from mother to
offspring every generation, but they have not yet quite become permanent parts of their host cells.

The range of eukaryotic organisms that host HBEs, and the functions that these HBEs provide
to their hosts, is enormous. The diversity of host–HBE interaction types, outcomes, durations,
and cellular locations is so large that trying to establish themes or rules for these interactions is
difficult. While I nevertheless try to extract themes and rules, be aware that a counterpoint exists
for almost every declarative state I make here.

Putting aside mitochondria and plastids, compiling a list of eukaryotic groups that do not host
HBEs is easier than making one of those that do: Vertebrates, by and large, do not seem to es-
tablish intracellular relationships with microbes that benefit them. However, HBEs can be found
in nearly every other eukaryotic group. Leguminous plants host intracellular bacteria that fix ni-
trogen (Young & Johnston 1989). Protists—which represent the bulk of eukaryotic diversity but
are also the least-studied type of eukaryote (Keeling & Burki 2019)—have numerous and diverse
HBEs (George et al. 2020, Graf et al. 2021, Nowack & Melkonian 2010). Plant and animal para-
sitic nematodes host bacterial HBEs that enable their parasitism (Brown et al. 2015, Kozek 1977).
Corals host photosynthetic endosymbiotic algae that help power their reef building (Muscatine
& Porter 1977). Insects, which represent the bulk of animal species, host a proportionately gi-
gantic variety of microbial HBEs (Baumann 2005, Buchner 1965, Moran et al. 2008). Some fungi
have even been shown to host intracellular bacteria (Bianciotto et al. 1996, Pawlowska et al. 2018).
Because of this immense diversity, I do not attempt to review every type of host–microbe en-
dosymbiosis. Rather, I focus on several systems that highlight one or more of the key steps in
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Symbiosomal
membrane:
a host-derived
membrane that
surrounds vacuolar
host-beneficial
endosymbionts and
regulates molecular
exchange between the
host and symbiont

Bacteriocyte:
a specialized cell in an
animal that houses
host-beneficial
endosymbionts

Bacteriome:
a specialized tissue in
an animal composed of
bacteriocytes and
other supporting cells

HBE biology. My examples are biased toward insect–bacterial systems because their incredible
diversity of HBE interaction types range in age from those that have been established extremely
recently (and reflect possible pathogenic origins) to those that are hundreds of millions of years
old (and reflect possible organellar ends).

4.1. Case Study: Aphids and Their Nutritional Host-Beneficial
Endosymbiont Buchnera

Aphids are sap-feeding insects that house intracellular bacteria to supplement their nutrient-poor
diets (Lamelas et al. 2011, Moran et al. 2003, Shigenobu et al. 2000). Like all animals, aphids
cannot make half of the amino acids—the essential amino acids—and these essential amino acids
are not present at high levels in their plant sap diets. In pea aphids, essential amino acids are
synthesized by an HBE of gammaproteobacterial origin called Buchnera aphidicola (Shigenobu
et al. 2000). Each Buchnera cell retains the two membranes of its ancestral gram-negative enve-
lope and is surrounded by a third host-derived symbiosomal membrane in adult aphids (Baumann
et al. 1995).This symbiosomalmembrane is known to be important in the regulation and exchange
of nutrients between the host and symbiont (Wilson 2020). Buchnera are not found in all aphid
cells but are restricted to specialized cells called bacteriocytes, which aggregate to form specialized
tissues called bacteriomes (Figure 4).

The symbiosomal membrane is not present at all stages of the aphid life cycle. [The aphid
life cycle is complex, containing an asexual phase in which females produce genetic clones of
themselves and a sexual phase more typical of animal reproduction (Moran 1992). While the
transmission of Buchnera differs between the asexual and sexual life cycles (Braendle et al. 2003,
Szklarzewicz &Michalik 2017,Wilkinson et al. 2003), here I outline the sexual phase because it is
more representative of HBE transmission in sap-feeding insects in general.] In adult aphids,Buch-
nera cells are surrounded by the three lipid bilayers (Baumann et al. 1995). As female aphids age,
Buchnera cells are released from bacteriocytes in a vomocytosis-like process (Koga et al. 2008) that
results in the loss of the symbiosomal membrane. These Buchnera cells then migrate to openings
at the posterior end of eggs, where they are held in a tightly clustered ball of cells (Buchner 1965,
Koga et al. 2008, Szklarzewicz & Michalik 2017) (Figure 4b,c,e). (Buchnera cells in the symbiont
ball are once again free-living with respect to their ancestral gram-negative diderm structure.) As
aphid embryos develop, the cells that are fated to become new bacteriocytes endocytose Buchnera
cells, whereby they regain their symbiosomal membrane (Figure 4f ). However, not all Buchnera
cells are transmitted to the next generation through migration to eggs (Wilkinson et al. 2003).
Excess Buchnera cells in aging aphids are destroyed by the host in a complex process culminat-
ing in Rab7 recruitment to the symbiosomal membrane and the destruction of Buchnera through
lysosomal activity (Hinde 1971, Nishikori et al. 2009, Simonet et al. 2018).

The life cycle of Buchnera shares many similarities to the intracellular biology of pathogens,
and so it seems worthwhile to review the process from a pathogen-centric view (Figure 3). In a
new aphid embryo, Buchnera cells are endocytosed into bacteriocytes and gain a vacuolar mem-
brane (e.g., Figure 3a,b). At some unknown point and in some unknown way, the normal process
of phagolysosome formation is diverted or stalled, and Buchnera resides safely in the symbiosomal
membrane (Figure 3l) for most of the life cycle of the insect.When Buchnera cells are needed for
transmission to the next generation, some Buchnera cells are vomocytosed (Figure 3m). Excess
Buchnera cells that are not needed for transmission to eggs gain Rab7 markers on their symbioso-
mal membrane and rejoin the process of phagolysosome maturation for destruction and recycling
(Figure 3d,e). The main difference between an HBE such as Buchnera and a pathogen is that in
aphids the host is now incentivized (indeed, required) to remodel the phagosomal membrane to
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Figure 4

The transmission of host-beneficial endosymbionts (HBEs) in sap-feeding insects. (a) A female adult sap-feeding insect (gray) contains a
bacteriocyte (blue) with HBEs contained within a host vacuole (orange). (b) At the appropriate developmental stage, HBEs are
vomocytosed out of the bacteriocyte, lose their host membrane, and migrate to the (c) egg (green) to be held in an extracellular symbiont
ball. (d) During embryo development, (e) HBEs are phagocytosed into the cell fated to become the new bacteriocyte and regain the host
vacuolar (or symbiosomal) membrane again as ( f ) adult insects.

avoidHBEdestruction, at least until the host is old enough that the bacteria are no longer required.
Because the aphid host seems to have the ability to destroy most of its Buchnera population, and
because Buchnera has lost most of its traditional pathogenic pathways during genome reduction,
the remodeling of HBE-containing vacuoles may bemore of a host-dominated process than an act
of microbial manipulation (of course,Buchnera cells likely still possess molecular signals indicating
their beneficial nature). In this view, the delay of microbial destruction in phagolysosomes is not a
trick played on the host but rather a deliberate act by the host to exploit its microbe for nutrients.
No matter the evolutionary forces at play, overall these limited data suggest that the end result of
Buchnera infection is modification and subversion of the classic endocytic pathway.

The transmission strategy outlined in Figure 4 is not unique to aphids. While the details
of timing and cell migration patterns vary widely in sap-feeding insects, the vast majority of
their HBEs go through at least one cycle of endocytosis and exocytosis during transmission
(Szklarzewicz & Michalik 2017). Indeed, the pattern of somatic to germline cell transfer seems
to be a widely conserved mechanism across vertically transmitted endosymbionts (Russell et al.
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2019). EvenWolbachia, the famous germline-associated reproductive manipulator of invertebrates
(Werren et al. 2008), undergoes cycles of exocytosis and endocytosis as it moves from somatic
to germline cells in insects and nematodes (Landmann 2019, Landmann et al. 2012, White et al.
2017).

4.2. Case Study: Pathogens as the Source of Host-Beneficial Endosymbionts

Although insect HBEs have long been known to come from groups of bacteria that include animal
pathogens (Baumann et al. 2006,Moran et al. 2005,Unterman et al. 1989), the sometimes extreme
levels of genome reduction in host-associated bacteria (Figure 2c) have made the precise nature
of the free-living antecedents of HBEs difficult to infer. Genes retained in old HBEs with small
genomes tell you what they do for their host, but not much about how they got to be that way
(McCutcheon & Moran 2012, Moran & Bennett 2014). From a comparative perspective, under-
standing the transition from free-living bacterium to HBE requires catching the process in the
early stages of establishment.

Several genera of insect-associated bacteria have members that have been isolated across the
spectrum of integration shown in Figure 2: Arsenophonus (Bressan 2014, Nováková et al. 2009),
Sodalis (Clayton et al. 2012,McCutcheon et al. 2019), Serratia (Moran et al. 2005, Petersen & Tisa
2013), and Symbiopectobacterium (Martinson et al. 2020) (hereinafter collectively referred to as the
ASSS bacteria). ASSS bacteria are all in the Enterobacteriaceae family within Gammaproteobac-
teria, which also contains pathogens such as Escherichia, Salmonella,Klebsiella, and Pantoea (Hauben
et al. 1998, Husnik et al. 2011, Williams et al. 2010). Bacteria in the Enterobacteriaceae are usu-
ally associated with plants and animals, often as facultative intracellular pathogens or HBEs, and
the genomes of free-living, pathogenic, or newly host-restricted strains often encode one or more
types of secretion system (e.g., T3SS) to manipulate host cells (Bengoechea & Sa Pessoa 2019,
Dale et al. 2002, Degnan et al. 2009, Husnik et al. 2011, Nováková et al. 2009, Ohl &Miller 2001,
Petersen & Tisa 2013,Walterson & Stavrinides 2015). ASSS bacteria are known to be pathogens
of plants, vectored by insects (Bressan 2014); to be pathogens of insects, vectored by plants (Pons
et al. 2019a); or to have gene inventories and mechanisms suggesting they may be both (Clayton
et al. 2012, Munoz et al. 2020).

One of the clearest examples of a very recent transition from a free-living state to a host-
restricted state comes from the Sodalis genus.Members of this genus have been identified as HBEs
in a huge diversity of insects and have been found across the integration spectrum shown in
Figure 2 (McCutcheon et al. 2019). The size of Sodalis HBE genomes ranges from the tiny
0.35Mb genome ofMikella endobia (Husnik&McCutcheon 2016) to the 4.5Mb genome of Sodalis
SOPE (Oakeson et al. 2014). Remarkably, a free-living version of Sodalis called Sodalis praecaptivus
was serendipitously isolated from a nonhealing wound in a man who had been impaled with a dead
crab apple tree branch (Clayton et al. 2012). A comparison of the S. praecaptivus and Sodalis SOPE
genomes revealed that over 3Mb of these two genomes were alignable at>99% sequence identity
(Clayton et al. 2012). This suggests an extremely recent transition of a S. praecaptivus–like ancestor
into an insect, an event that likely occurred on the order of tens of thousands of years ago (Clayton
et al. 2012). What sort of lifestyle does S. praecaptivus have before it transitions to an HBE? Like
many pathogens, its genome encodes T3SS systems and has other genes indicative of an ability to
be at least a facultative pathogen (Clayton et al. 2012). S. praecaptivus contains a quorum-sensing
system that turns off virulence genes when the bacterium reaches high titers in insects, suggesting
a mechanism that S. praecaptivus may use to infect insects without killing or overwhelming them
(Enomoto et al. 2017). Consistent with this idea, quorum-sensing mutant strains of S. praecaptivus
make infected insects sicker than does the native S. praecaptivus strain (Munoz et al. 2020).
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A similar situation has been described for bacteria in the Serratia genus (Manzano-Marín &
Latorre 2016, Petersen & Tisa 2013). Serratia relatives have been isolated across a spectrum from
human pathogens (Iguchi et al. 2014) to nutritional HBEs with reduced genomes (Lamelas et al.
2011,Manzano-Marín & Latorre 2014, Perreau et al. 2021). Some insect pathogenic strains infect
the guts of insects and are culturable in the lab (Pons et al. 2019b, Renoz et al. 2019). Recently,
pathogenic strains of Serratia have been shown to be endocytosed into aphid embryos and later
migrate into specialized cells meant for HBEs, but Escherichia coli cells are not (Perreau et al. 2021).
However, while the aphid–Serratia interaction is specific in the sense of cellular recognition and
endocytosis, insects that take up pathogenic Serratia strains are eventually killed by the infection
(Perreau et al. 2021). This suggests that other, less pathogenic strains may be the source of Serratia
HBEs, or that the routes of intracellular infection in nature are not as detrimental to the insects
in some contexts.

4.3. Case Study: Nitrogen-Fixing Host-Beneficial Endosymbiont
Bacteria in Leguminous Plants

Legumes are important plants for humans as a source of nutrient-rich foods (soybeans, beans,
chickpeas, and others) and for their ability to grow in nitrogen-poor soil (Zahran 1999). Their
ability to fix atmospheric N2 into biologically accessible nitrogen compounds comes from an en-
dosymbiosis between plant root cells and rhizobial bacteria (Oldroyd et al. 2011). The plant–
rhizobia endosymbiosis is a well-understood host–HBE relationship at the cell biological level
and is notable for the clear links it provides between the pathogenic and host-beneficial lifestyles.

Soil is teeming with bacteria and other microbes (Fierer 2017), but only a small number of bac-
teria from the classes Alphaproteobacteria and Betaproteobacteria are able to form endosymbioses
with legume root cells. This symbiosis is established through a complex interplay of host and sym-
biont signals; successful endosymbiosis results in bacterial cells that are enclosed in host-derived
membranes (called the symbiosomal membrane, as in aphids) where N2 fixation takes place ( Jones
et al. 2007, Oke & Long 1999, Oldroyd et al. 2011, Sachs et al. 2018, Young & Johnston 1989).
Cell biological parallels between rhizobial bacteria and pathogens have long been noted (Deakin
& Broughton 2009,Djordjevic et al. 1987, Jones et al. 2007, Kambara et al. 2009, Soto et al. 2006).
In fact, rhizobia have been called the “sophisticated parasite” by authors (Djordjevic et al. 1987,
p. 146) noting the shared strategies that rhizobia and pathogens take to infect cells. These shared
strategies include the use of protein secretion systems (including T3SS and T4SS) to alter the
biology of infected cells (Kambara et al. 2009), the modification of bacterial surface LPSs to evade
the immune system and allow chronic infections of rhizobia in host cells (Ferguson et al. 2004,
Glazebrook et al. 1993), and the use of quorum sensing to coordinate bacterial growth and gene
expression (Loh et al. 2002, Soto et al. 2006). Finally, a close phylogenetic relationship between
rhizobia and intracellular pathogens such as Brucella abortus has been noted ( Jones et al. 2007,
Leclercq et al. 2019).

4.4. Case Study: Intracytoplasmic Host-Beneficial Endosymbionts in Insects

Just as pathogens exist as vacuolar or cytoplasmic forms (Figure 3), different HBEs are found in
host-derived vacuoles (Figure 3l) or free in the cytoplasm (Figure 3h). Rhizobia, Buchnera, and
Wolbachia all reside in host-derived symbiosomal membranes, but many other insects host HBEs
that primarily exist as cytoplasmic associates.Weevils have cytoplasmicHBEs that provide key nu-
trients involved in cuticle production (Nardon et al. 2003), and, in some weevil species, this HBE
is the Sodalis SOPE strain introduced in Section 4.2 (Oakeson et al. 2014,Toju et al. 2013).Weevils
retain a somatic cell population of bacteria that grows quickly to produce nutrients in young insects
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Trogocytosis:
the process of sharing
membrane or
cytoplasmic material,
including microbes,
between two
temporarily adjoined
eukaryotic cells

when cuticle production and hardening is needed, and a germline cell population that is used to
transmit bacteria to the next generation (Vigneron et al. 2014). Somatic Sodalis cells are destroyed
by autophagy (e.g., Figure 3i,j) when no longer needed by their hosts, but germline bacteria are
retained by the weevil (Masson et al. 2015, Vigneron et al. 2014). Retained bacteria need to leave
host cells and infect new ones to be transmitted to the next generation, but how this happens is
unclear. Transcriptome experiments show that Sodalis SOPE express T3SS genes when infecting
new cells, suggesting that they retain a pathogen-like ability to remodel new host cells upon in-
fection (Maire et al. 2020). Similarly, carpenter ants have a nutritional HBE called Blochmannia
that primarily exists as a cytoplasmic resident (Schröder et al. 1996). Like Sodalis SOPE in weevils,
Blochmannia levels have been proposed to be regulated by cell-specific host autophagy (Gonçalves
et al. 2020,Kupper et al. 2016, Stoll et al. 2010).The mechanism of Blochmannia cell-to-cell spread
is also unknown, but these bacteria are seen in vacuoles during oocyte transfer, and host endocytic
and exocytic pathways have been proposed as possible mechanisms of host cell transfer (Kupper
et al. 2016).

The mechanisms used by cytoplasmic HBEs to escape donor cells and infect recipient host
cells are unknown. In some cases, the host donor cell might be destroyed or ruptured by apop-
totic mechanisms (Lawen 2003) to allow bacterial escape and phagocytosis by the recipient host
cell, although this approach seems a sloppy and inelegant solution in the otherwise tightly reg-
ulated process of HBE transmission. Some cytoplasmic bacterial pathogens such as Listeria and
Shigella use actin-based motility to force pathogen-containing protrusions to be internalized by
neighboring cells (Ireton 2013). Other cytoplasmic and vacuolar pathogens might use autophagy-
related mechanisms to enable their exocytosis (Checroun et al. 2006, Starr et al. 2012) or ejection
(Gerstenmaier et al. 2015) from donor cells (e.g., Figure 3i,k). Finally, direct cell-to-cell bacterial
spread has been observed in the cytoplasmic pathogen Francisella tularensis in a process called tro-
gocytosis (Steele et al. 2016). In trogocytosis, components of the plasma membrane or cytoplasm
are transferred between neighboring cells through direct but temporary cell membrane fusion
(Dance 2019, Joly & Hudrisier 2003). Trogocytosis may be a way for cytoplasmic (or vacuolar)
HBEs to move from cell to cell when host donor and recipient cells are able to physically touch
one another.

4.5. Case Study: Photosynthetic Host-Beneficial Endosymbionts

Cyanobacteria were the first organisms to evolve the ability to fix CO2 into organic molecules
using light energy (Soo et al. 2017). The first plastid-bearing eukaryotes harnessed this ability
by acquiring a cyanobacterium as an HBE, which over time evolved into the plastid (Rodríguez-
Ezpeleta et al. 2005). P. chromatophora is an amoeba that has secondarily acquired photosynthesis
in an event that strongly parallels the original plastid acquisition (Bhattacharya et al. 2012, Marin
et al. 2005). This endosymbiotic cyanobacterium, now called the chromatophore, was established
about 100million years ago (Delaye et al. 2016) and has a genome that has experienced a reduction
in size compared with those of free-living cyanobacteria (Nowack et al. 2008). Like mitochondria
and plastids, large numbers of host proteins are transported into the chromatophore to compen-
sate for HBE gene loss (Nowack & Weber 2018, Nowack et al. 2016, Singer et al. 2017). While
the precise organization of the chromatophore cell envelope is not entirely clear, it seems to be
surrounded by a host-derived (presumably phagocytic) membrane (Bhattacharya et al. 2012, Kies
1974, Sato et al. 2020).This is in contrast to the plastid resulting from the endosymbiosis of the an-
cestor of plants (the chloroplast), which is cytoplasmic and not in a vestigial phagocytic membrane
(McFadden 2001).

Paramecium bursaria is a ciliate that, similar to Paulinella, has secondarily acquired photosyn-
thetic capabilities through endosymbiosis, except in this case it was the acquisition of a green alga
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rather than a cyanobacterium that endowed the host with light-harvesting abilities (Siegel 1960).
Also differentiating this symbiosis from that of Paulinella is the ability of both host Paramecium
and its endosymbiont [usually a species of Chlorella (Hoshina & Imamura 2008)] to grow inde-
pendently of each other. This symbiosis can thus be considered facultative rather than obligate
from the host perspective: Many algae are digested (rather than retained as a photosymbiont)
when the symbiosis is reestablished in the lab (Karakashian & Karakashian 1973), and the host
is able to control the algal symbiont load depending on how much light is available (Lowe et al.
2016). Successful endosymbionts are engulfed by phagocytosis, but the hosts are somehow able
to remodel alga-containing vacuoles into stable compartments that evade fusion with lysosomes
(Kodama & Fujishima 2005, 2010).

Cnidarians (corals, anemones, and jellyfish) establish intravacuolar symbioses with photosyn-
thetic algae in the genus Symbiodinium for the provisioning of photosynthate and other nutrients
(Kazandjian et al. 2008). The engulfment of Symbiodinium by its host occurs through phagocyto-
sis, in which the HBE is retained in a stalled phagosome that has somehow remodeled its host-
derived membrane to evade phagolysosome formation (Davy et al. 2012, Mohamed et al. 2016).
Anemones that phagocytose Symbiodinium create a phagocytic vacuole that rapidly becomes Rab5-
positive but excludes Rab7, a process that is disrupted with heat-killed Symbiodinium, suggesting
that vacuole remodeling is at least in part an active process by the endosymbiont (Chen et al.
2003). Recent work has shown that discrimination between beneficial and pathogenic microbes
occurs after phagocytosis, in which nonbeneficial microbes are expelled from anemone cells by
vomocytosis rather than being destroyed in phagolysosomes ( Jacobovitz et al. 2021).

The Paulinella,Paramecium, and cnidarian examples all use (or used) phagocytosis to internalize
their endosymbionts. In contrast to the insect and plant examples described above, however,
there are no known pathogenic close relatives to the cyanobacterium or algae that become HBEs
in these systems. This suggests that the signals produced by the nascent photosynthesizing
HBEs during establishment to avoid destruction in phagolysosomes may be different from those
produced by pathogens, such as effectors secreted by secretion systems. The pathogenic abilities
of these photosynthesizing microbes could be presently underappreciated, or the engulfed
microbes could use other indirect mechanisms to punish overly ambitious host digestion ( Jenkins
et al. 2021). However, the hosts of these photosynthesizing HBEs may have also established
surveillance systems to screen for endocytosed microbes that produce a benefit, and this signal
may in part be used to stall phagolysosome formation.

5. CONCLUSIONS

The idea that host-beneficial bacteria often have pathogenic origins, and that both HBEs and
pathogens may use common molecular mechanisms to interact with their host cells, is not new
(Dale et al. 2002, Ewald 1987, Goebel & Gross 2001, Hentschel et al. 2000, Jones et al. 2007,
Kambara et al. 2009, Sachs et al. 2011). Much of the previous work, especially in insects, has fo-
cused on the similarities between the microbial players: that both HBEs and pathogens encode
secretion systems, that they both encode quorum-sensing systems, that their genomes show shared
and reproducible patterns, and that they often group together in phylogenetic trees.What I have
tried to highlight here is that the pathogen-to-HBE transition is not distinct from but is rather
continuous with the HBE-to-organelle transition at the genomic level, and that the host processes
of endocytosis, exocytosis, and autophagy are likely central to understanding how HBEs become
established in, persist in, and are transmitted between host cells. In all of these systems, a key out-
standing point to address is how cell-in-cell relationships often arising from unstable antagonisms
shift toward contexts that allow HBE formation. While this transition probably occurs rapidly
in evolutionary time and likely involves complex combinations of ecological factors that flip the
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cost-benefit ratio toward one favoring infection, it must take place inside of a host cell and so must
involve host cellular processes. Increased attention on HBE biology may therefore reveal general
cell biological mechanisms of interest to both pathogen and organelle biologists.

SUMMARY POINTS

1. Bacteria that adopt intracellular lifestyles experience genome reduction. Genes that are
retained reflect the bacterium’s role in the endosymbiosis: Pathogens retain genes to
replicate themselves and infect and manipulate hosts, while host-beneficial endosym-
bionts (HBEs) retain genes to replicate themselves and provide host services. In some
cases, the retained gene sets overlap (e.g., type III secretion systems).

2. HBEs that remain in host cells for long periods of time can lose more than 95% of their
genes compared with free-living relatives. The genome sizes of some long-established
HBEs overlap with mitochondria and plastids in terms of genome size, gene number,
and cellular and genetic integration with their host cells.

3. While HBEs and pathogens both require and exploit the same host cell biological path-
ways (endocytosis, exocytosis, and others) to complete their life cycles, they differ in
outcome.Host cells fight pathogens but enable HBEs. That they both use the same host
cell biological pathways suggests that transitions between the pathogen and HBE states
could be rapid and driven by subtle changes in host needs, host environment, and the
signals sent from the infecting microbe to the host.

4. Phagocytosis first evolved in eukaryotes as a mechanism to gain nutrients through mi-
crobial digestion, but, in some cases, eukaryotic cells can domesticate phagocytosed mi-
crobes to create a type of live nutritional farming. The ability of eukaryotes to survey
phagocytotic prey for benefit and to stall prey digestion in phagolysosomes if a benefit
is sensed seems to play an important role in photosymbioses but may also be important
in other systems.

5. Phagocytosis was secondarily adopted for host protection through the evolution of pro-
fessional microbe-digesting immune cells such as macrophages and neutrophils. Mi-
crobes digested in professional immune cells have mechanisms, such as the production
of host-modifying effector proteins, to block their destruction in phagolysosomes, and
these stalling mechanisms may also be used in the establishment of HBEs.

FUTURE ISSUES

1. How do the mechanisms of intracellular persistence—such as escaping the host vesicle
and stalling phagolysosome formation—differ between pathogens and HBEs?

2. How do the mechanisms of cellular integration—such as the transferral of genes and the
importation of host proteins—differ between HBEs and organelles?

3. What are the lifestyles of microbes that are prone to becoming HBEs before they are
HBEs? Why do some groups of microbes, such as bacteria from the Sodalis clade, form
HBE relationships with eukaryotes over and over again, while others rarely form these
types of relationships?
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4. How do hosts differentiate between harmful and beneficial intracellular microbes?
How is the balance of microbial farming versus microbial digestion determined in
endosymbiosis?

5. What is the balance between intracellular HBE persistence through classical pathogenic
means (e.g., secretion of effector proteins) versus persistence by sending their hosts sig-
nals of benefit (e.g., production of a nutrient)?

6. Could some pathogens delay host digestion by sending false signals (e.g., production
of a nutrient), in the same way that some HBEs avoid digestion and promote farming
through the use of classically pathogenic mechanisms?
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